THE RISE OF ARTIFICIAL INTELLIGENCE IN ASIA AND THE WORLD
First coined by American computer scientist John McCarthy in 1956, artificial intelligence (AI) refers to the cognizant abilities of machines which have been programmed to autonomously perform, think and learn like a human. Today, from unassuming home appliances such as robotic vacuums, to more awe-inspiring projects such as autonomous cars and self-learning weather forecast technologies, AI has permeated into various aspects of industry and society. As its applications become increasingly adapted into various aspects of our lives, its ability to bring about the digital transformation of the world would pose various disruptive implications for the economy, environment and our day-to-day lifestyles.
Arguably, the main attraction or headliner of AI, as it has captured the attention of the commercial world, is its potential to drastically increase productive and cost efficiencies. It’s transformative effects have been echoed by various industry experts, who have projected that such technologies would boost corporate profitability in 16 industries across 12 economies by an average of 38% by the year 2035[1]. By eliminating repetitive, low level tasks which were traditionally performed by humans, one of AI’s most noticeable disruption would definitely be on the labor market, as companies look into using AI to optimise internal operational process and alter the way service and products were originally offered to their customers. The nature of long-established roles are also likely to evolve in the meantime.
Global investment in AI is growing rapidly, with an estimated investment of $26 to $39B investment in AI. At present, the two major global hubs of AI development are the United States and China. Funding for artificial intelligence companies in the United States has increased exponentially in recent years, growing from around 300 million U.S. dollars in 2011 to around 16.5 billion in 2019[2]. For China, PricewaterhouseCoopers predicts that $7 trillion of China’s $38 trillion GDP by 2030 would be attributed to AI through new business creation in fields such as autonomous driving and precision medicine, as well as existing business upgrades in terms of improved efficiencies and reduced costs[3].
While the bulk of AI investments are presently made by tech giants Alibaba, Amazon, Google, Baidu and Facebook in a race towards AI as a long-term strategy for business sustainability and competitiveness, AI as a concept is still poorly understood and intimidating to the ASEAN region. However, despite the region’s relatively slow advances in AI technologies, its oncoming impact is undeniable. Previously published MGI research estimated that currently demonstrated technologies have the potential to automate roughly half of the work activities performed in ASEAN’s four biggest economies: Indonesia (52 percent of all activities), Malaysia (51 percent), the Philippines (48 percent) and Thailand (55 percent), with these tasks currently generating more than $900 billion in wages[4].
Out of the ASEAN member states, Singapore, as the region’s technology capital, has made the greatest AI advances thus far, and is a natural first choice for AI tech startups to establish their presence in Asia. WIZ.AI, having its research institute based in Nanjing, China, established its first overseas headquarters in Singapore in 2019, from whence it aims to continue developing its pioneering and proprietary conversational AI talkbot technologies and push it out to ASEAN.
CONVENTIONAL CHATBOTS VERSUS AI CONVERSATIONAL TALKBOTS
2.1 THE RISE OF CHATBOTS IN CUSTOMER SERVICE
Chatbots are computer programs built on the concept of artificial and data analytics, and is commonly installed on websites or social media platforms. With a chatbot application, companies are able to automatically respond to customer messages round the clock, through a virtual assistant which recognises entered keywords and is able to provide instantaneous, standardised text replies and guidance to the customer.
This rise of chatbots is projected to be significant; as reported by Global Market Insights, the chatbot market will be worth $1.34 billion by 2024, with 42.52% of that alone from the customer service sector[5]. The rise of chatbots is tightly linked to new technological advancements and evolving customers’ expectation of brand interactions. With the prevalence of social media and mobile messaging applications, the average consumer now expects a company’s to resolve issues and respond to requests with speed. Based on a 2017 customer survey conducted by Microsoft, 54% of those polled expressed higher expectations for customer service today compared to the previous year, with the percentage increasing to 66% for younger respondents at the 18 – 34 age group[6]. Falling back on traditional forms of communication such as emails or text messages are no longer acceptable; in the same survey, 68% of the respondents have a more positive view of brands which take the initiative in providing proactive customer service notifications.
In addition to it being used as a medium to provide basic customer service, chatbots are also suitable for use in marketing & sales of products, which further spurs demand and market growth in this sector. These platforms aid companies to expand their reach by connecting with a larger audience, aiding in decision making by addressing customer queries on the spot and subsequently pushing suitable product recommendations.
2.2 WIZ’S AI CONVERSATIONAL TALKBOT – ONE STEP UP FROM CHATBOTS
In the 2017 Global State of Customer Service Report by Microsoft, email and telephone are still the primary communication channels for many customers, while live chat, self-service, social media, and chatbots are relatively lower in terms of raw volume[7].
It would seem then that maintaining a hotline available for urgent customer queries 24/7 is key to keeping customers happy and loyal. Despite the increasing number of self-service options made possible by technology, customers still express a preference for live-agent support, with 30% of global respondents frustrated when they are not able to do so. The value of being reachable to customers is further demonstrated when 30% of people polled are of the opinion that being able to speaking with a knowledgeable and friendly agent is a significant factor that makes or break a customer service experience.
Working from the same belief that voice conversations are still the most natural way of interaction for humans, and that artificial intelligence is key in the next wave of hyper-personalized customer engagement, WIZ.AI combines the best of both worlds, integrating its intuitive AI conversation capabilities into the simplicity and familiarity of a phone call. Pioneering a new market category, its AI Conversational Talkbots takes centre stage as a cutting-edge, turnkey customer service solution.
Capable of understanding human speech in a variety of accents, expressing empathy and engaging in unlimited multi-round conversations with the customer, WIZ’s AI Conversational Talkbots provide a more interactive, human-like and fulfilling customer service experience that is superior to text-based chatbots. Compared to human agents, its Talkbots are also more consistent and reliable. Offered at the fraction of the costs of maintaining a human call centre, WIZ’s AI Conversational Talkbot allows any corporations with heavy customer communication needs to maintain its personal touch with its customers in a cost-effective manner, with endless scaling possibilities for both new inbound and outbound call campaigns. Its backend CRM system captures and sorts through customer intentions in real-time, collecting and digitalising valuable customer intention data.
WIZ.AI’s proprietary AI talkbots have been adapted for mass commercial applications in the banking, telecommunications, health care and e-commerce industries. Besides Singapore, WIZ.AI also operates offices in China, Jakarta and the Philippines with a team of scientists, developers, linguists, and dialogue designers.
- AI – BRINGING CONVERSATIONAL AI INTO THE MAINSTREAM
3.1 COMPONENTS OF WIZ’S AI CONVERSATIONAL TALKBOTS
WIZ.AI’s proprietary AI talkbots can be broadly broken down into three main elements:
- Natural Language Processing & Understanding: Recognises and processes speech patterns and nuances through the responses of the speaker, allowing the talkbot to understand the intent of the speaker.
- Automatic Speech Recognition: Recognises and understands local accents and lingo
- Text to Speech: AI voice tailored to sound human and speak with local accents
3.1.1 NATURAL PROCESSING LANGUAGE
Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence, employing the computer in comprehending and handling speech and text of natural language. There are several fields NLP can be applied to; speech recognition, expert systems, artificial intelligence, cross language information retrieval (CLIR), text processing, language translation, speech recognition, and user interfaces.
In other to capture the whole process, NLP needs to include several diverse procedures for interpreting Asia’s local languages. It could involve machine learning, statistical, algorithmic, or rules-based approaches. The steps to to build a Natural Language Processing (NLP) model are as follows:
- Stage 1: Segmentation of Sentence
The first stage required to build an NLP model is the breaking of prearranged paragraph into single sentences. This is done to process the meaning line by line.
- Stage 2: Word Tokenization
After sentence segmentation, it is followed by word extraction from each sentence one after the other. The tokenization algorithm can be programmed to identify a word whenever a ‘space’ is observed. All these would be achieved following Asian natural language.
- Stage 3: Prediction of Parts of Speech
It involves classifying words into their respective part of speech as duly represented in Asian language. Parts of speech classification will help the machine learning model to comprehend its role in the sentence. Machine learning might not actually know the meaning of each word in sentence setting the way human being do. A lot of data has to be fed into the model along with precise label of each word’s meaning and part of speech.
- Stage 4: Text Lemmatization
The machine learning model learns to identify the most basic form of words in a sentence by differentiating between closely related words.
- Stage 5: Pinpointing Stop Words
This stage is saddled with identifying the importance of each word in a sentence. Similar to the English language, Asia Languages also contains many commonly used filter words that introduce noise to a sentence. It is necessary for machine learning to identify them and flag them as stop words i.e. words that can be filtered out before undertaking statistical investigation.
- Stage 6: Dependency Parsing
It is the stage where grammatical laws of Asian language would be employed to identify how words are related to one another.
- Stage 7: Entity Analysis
This is achieved by going through the entire sentence in Asian Language and identifying all the important words in the text.
- Stage 8: Pronouns Parsing
The last and most challenging stage of building a NLP model, this step employs machine learning to keep track of pronouns with respect to the sentence context, allowing the bot to comprehend the meaning right from the context of the sentence. To achieve this, the Machine Learning model has to be fed with a lot of data alongside correct tags for the model to be able to identify the pronouns effect in a sentence.
3.1.2 AUTOMATIC SPEECH RECOGNITION (ASR)
This is where a chatbot is differentiated from a AI conversational talkbot – the latter has the added challenge of first having to understand the different accents and local lingo in order to recognise the customer’s intention. ASR training involves collecting speech samples from a variety of language backgrounds, and through machine learning over time, the talkbot gets more adept at deciphering the local accents and lingo.
3.1.3 TEXT-TO-SPEECH (TTS)
Text-to-Speech (TTS) is the channel whereby the talkbot responds and converse with the customer in real-time. WIZ.AI’s proprietary TTS generation system has been designed to be life-like, encouraging customers to share more, and allowing companies to gain deeper insights into customer intentions and needs.
With customisable voices, the customer call experience is further enhanced with a quality TTS which matches the brand persona. The use of a single distinguishing voice sets your company apart from competitors and also ensures brand consistency across all different customer touchpoints.
- LOOKING FORWARD
A disruptive technology, AI is transforming the face of customer service and forcing companies to relook into their customer touchpoints and service strategy in order to retain customer loyalty, business sustainability and competitiveness in the long run. Conversational AI technologies are likely to lead this evolution, and as the talkbot product gets better understood and commercialised, we expect more companies in Asia to adopt this product, changing the landscape of ASEAN customer service and economies permanently.
[1] Accenture, How AI boosts industry profits and innovation, June 21, 2017
[2] Shanhong Liu, Artificial Intelligence funding United States 2011-2019, June 6, 2020 https://www.statista.com/statistics/672712/ai-funding-united-states/
[3] PwC Global, Sizing the Price – PwC’s Global Artificial Intelligence Study – Exploiting the AI Revolution, June 2017. https://www.pwc.com/gx/en/issues/data-andanalytics/publications/artificial-intelligence-study.html
[4] Mckinsey Global Institute, Artificial Intelligence and Southeast Asia’s Future, 2017 https://www.mckinsey.com/~/media/mckinsey/featured%20insights/artificial%20intelligence/ai%20and%20se%20asia%20future/artificial-intelligence-and-southeast-asias-future.ashx
[5] Global Market Insights, Global Chatbot Market worth over $1.34bn by 2024, August 26, 2019 https://www.gminsights.com/pressrelease/chatbot-market
[6] Microsoft, State of Global Customer Service Report, 2017 https://info.microsoft.com/rs/157-GQE-382/images/EN-CNTNT-Report-DynService-2017-global-state-customer-service.pdf
[7] Microsoft, State of Global Customer Service Report, 2017 https://info.microsoft.com/rs/157-GQE-382/images/EN-CNTNT-Report-DynService-2017-global-state-customer-service.pdf